A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components.
نویسندگان
چکیده
We describe a novel slow oscillation in intracellular recordings from cortical association areas 5 and 7, motor areas 4 and 6, and visual areas 17 and 18 of cats under various anesthetics. The recorded neurons (n = 254) were antidromically and orthodromically identified as corticothalamic or callosal elements receiving projections from appropriate thalamic nuclei as well as from homotopic foci in the contralateral cortex. Two major types of cells were recorded: regular-spiking (mainly slow-adapting, but also fast-adapting) neurons and intrinsically bursting cells. A group of slowly oscillating neurons (n = 21) were intracellularly stained and found to be pyramidal-shaped cells in layers III-VI, with luxuriant basal dendritic arbors. The slow rhythm appeared in 88% of recorded neurons. It consisted of slow depolarizing envelopes (lasting for 0.8-1.5 sec) with superimposed full action potentials or presumed dendritic spikes, followed by long-lasting hyperpolarizations. Such sequences recurred rhythmically at less than 1 Hz, with a prevailing oscillation between 0.3 and 0.4 Hz in 67% of urethane-anesthetized animals. While in most neurons (approximately 70%) the repetitive spikes superimposed on the slow depolarization were completely blocked by slight DC hyperpolarization, 30% of cells were found to display relatively small (3-12 mV), rapid, all-or-none potentials after obliteration of full action potentials. These fast spikes were suppressed in an all-or-none fashion at Vm more negative than -90 mV. The depolarizing envelope of the slow rhythm was reduced or suppressed at a Vm of -90 to -100 mV and its duration was greatly reduced by administration of the NMDA blocker ketamine. In keeping with this action, most (56%) neurons recorded in animals under ketamine and nitrous oxide or ketamine and xylazine anesthesia displayed the slow oscillation at higher frequencies (0.6-1 Hz) than under urethane anesthesia (0.3-0.4 Hz). In 18% of the oscillating cells, the slow rhythm mainly consisted of repetitive (15-30 Hz), relatively short-lasting (15-25 msec) IPSPs that could be revealed by bringing the Vm at more positive values than -70 mV. The long-lasting (approximately 1 sec) hyperpolarizing phase of the slow oscillation was best observed at the resting Vm and was reduced at about -100 mV. Simultaneous recording of another cell across the membrane demonstrated synchronous inhibitory periods in both neurons. Intracellular diffusion of Cl- or Cs+ reduced the amplitude and/or duration of cyclic long-lasting hyperpolaryzations.(ABSTRACT TRUNCATED AT 400 WORDS)
منابع مشابه
The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks.
As most afferent axons to the thalamus originate in the cerebral cortex, we assumed that the slow (< 1 Hz) cortical oscillation described in the two companion articles is reflected in reticular (RE) thalamic and thalamocortical cells. We hypothesized that the cortically generated slow rhythm would appear in the thalamus in conjunction with delta and spindle oscillations arising from intrinsic a...
متن کاملModel for Slow (2-3 Hz) Neocortical Paroxysmal Oscillations in Vivo
The oscillations observed in EEG and intracellular recordings during slow neocortical paroxysmal activity are larger than those during slow-wave sleep (SWS) activity as a consequence of increased synchrony of neuronal firing. The mechanisms underlying paroxysmal activity were investigated in computational network models of cortical neurons, which included voltage and Ca2+-dependent currents. In...
متن کاملPotassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations.
In slow neocortical paroxysmal oscillations, the de- and hyperpolarizing envelopes in neocortical neurons are large compared with slow sleep oscillations. Increased local synchrony of membrane potential oscillations during seizure is reflected in larger electroencephalographic oscillations and the appearance of spike- or polyspike-wave complex recruitment at 2- to 3-Hz frequencies. The oscillat...
متن کاملIntracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.
The newly described slow cortical rhythm (approximately 0.3 Hz), whose depolarizing-hyperpolarizing components are analyzed in the preceding article, is now investigated from the standpoint of its relations with delta (1-4 Hz) and spindle (7-14 Hz) rhythmicity. Regular-spiking and intrinsically bursting cortical neurons were mostly recorded from association suprasylvian areas 5 and 7; fewer neu...
متن کاملFocal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates.
Field potentials from different neocortical areas and intracellular recordings from areas 5 and 7 in acutely prepared cats under ketamine-xylazine anesthesia and during natural states of vigilance in chronic experiments, revealed the presence of fast oscillations (80-200 Hz), termed ripples. During anesthesia and slow-wave sleep, these oscillations were selectively related to the depth-negative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 8 شماره
صفحات -
تاریخ انتشار 1993